16 research outputs found

    Experimental Evaluation for an Extremum Seeking Control Strategy based on Input-output Correlation with a Mini-split Air Conditioning System

    Get PDF
    Extremum Seeking Control (ESC) has emerged as a model-free real-time optimization framework, typically based on dither-demodulation driven gradient estimation. However, such conventional ESC suffers from slow convergence. Salsbury et al. have recently proposed an input-output correlation based ESC (IOC-ESC) strategy anchored on a statistical analysis. The IOC-ESC algorithm is less sensitive to changes in its internal parameters because of the use of a normalized correlation coefficient in the feedback loop. The design goal of the algorithm is to have only two tunable parameters: (1) a time scale parameter that relates to the time open loop time constant of the system; and (2) the amplitude of the dither signal. A suitable set of generic internal parameters is still in the process of being identified as more test data become available from different system types. For the work reported here, the feedback gain (referred to as the tuning factor) with the IOC-ESC was also tuned for optimal performance. This study aims to conduct an experimental evaluation for the IOC-ESC strategy with a ductless mini-split air conditioning system, compared with conventional ESC (CON-ESC). The system features variable-capacity compressor operation and variable-speed operation for the evaporator and condenser fans. In this study, both single-input and two-input ESC scenarios are tested. The manipulated inputs include the evaporator and condenser fan speeds, while the total power consumption is used as feedback for all cases. The experimental setup is developed with a 9000 BTU variable-speed mini-split AC system serving a 4’x8’x6’ insulated chamber, and an electrical fan heater is used to provide an artificial heat load. The data acquisition and control algorithms are implemented on a National Instruments CompactRIO platform. Both IOC-ESC and CON-ESC are tested with the same setup. For single-input scenario, the manipulated input is the condenser fan speed. The testing results of five trials of IOC-ESC are used to evaluate the impact of the two tuning parameters, i.e. dither frequency and tuning factor, on the ESC performance. IOC-ESC#1, IOC-ESC#4 and IOC-ESC#5 have the same dither frequency but different tuning factors, while IOC-ESC#1, IOC-ESC#2 and IOC-ESC#3 have the same tuning factor but different dither frequencies. The testing results of two trials of CON-ESC are then compared with the IOC-ESC results. Both CON-ESC and IOC-ESC can effectively reduce the power consumption of the mini-split system without sacrificing zone temperature regulation. Moreover, the settling time of IOC-ESC ranges from 300 to 600 seconds, while the settling time of CON-ESC ranges from 900 to 1200 seconds. Overall, the IOC-ESC converges faster than the CON-ESC. For two-input scenario, the manipulated inputs are condenser fan speed and evaporator fan speed. The testing results of the two-input IOC-ESC are compared with the result of a two-input CON-ESC trial by Yan et al. with the same system. The settling times for CON-ESC and IOC-ESC are about 1800 and 1200 seconds, respectively. In summary, both CON-ESC and IOC-ESC can optimize the condenser fan speed and evaporator fan speed for energy efficient operation, while the IOC-ESC converges faster and has fewer tuning parameters

    Model-free Control and Automatic Staging of Variable Refrigerant Flow System with Multiple Outdoor Units

    Get PDF
    For efficient operation of a variable refrigerant flow (VRF) air conditioning system with multiple outdoor units (ODUs), we propose a model-free control strategy based on extremum seeking control along with automatic staging control logic. The proposed strategy is evaluated with a representative VRF system consisting of 12 indoor units (IDUs) and three ODUs. The IDU zone temperature is regulated by EEV opening, and the compressor pressure is regulated by compressor speed. To optimize load sharing among multiple ODUs in operation, a set of bypass valves (BPVs) are added to the suction side of the compressors to manipulate refrigerant flow distribution among different compressors as needed. A penalty-function based multivariable extremum seeking control (ESC) method is used for real-time optimization of system operation. The performance index as the ESC feedback is the total power of the compressors, the ODU fans and the IDU fans, augmented with penalties for securing minimum superheat at the suction side of compressors. The manipulated inputs include the compressor suction pressure setpoint, the openings of BPVs at the suction side of the compressors, and a uniform setpoint of fan speed for all ODUs. As for the ESC feedback, the compressor power is normalized by its capacity. A set of control strategies for staging on/off particular ODUs is developed based on the compressor speed of the operating ODUs. Under increasing load, if the operating compressor(s) speed exceeds the higher limit of operation speed range (80% of rated speed), an additional ODU turned on to meet the load demand. Under decreasing load, it is desirable to turn off the least efficient ODU in a model-free fashion. In this study, an ESC based ODU staging-off strategy is proposed, for which the compressor shaft power normalized by the rated capacity is adopted as the ESC input. In addition to the compressor pressure setpoints and ODU fan speeds, the manipulated inputs of ESC also include the openings of suction-side BPVs in order to optimize load sharing among the multiple ODUs. With online optimization of ODU load sharing based on the normalized compressor power, the ESC can drive less efficient compressor(s) to operate at lower speed/capacity. If the compressor speed of an ODU falls below the preset lower limit of operational speed range (e.g. 20% of the rated speed) for long enough time, this ODU will be turned off. A dynamic simulation model of the multi-ODU VRF system is developed with Dymola and TIL Library. Simulation studies have been performed to evaluate the proposed ESC strategy for energy efficient operation during constant load patterns and the control logic for staging on and off ODU during load increase and decrease. The total power searched by the ESC is shown to be close to that obtained by a genetic algorithm based global optimization procedure in Dymola. Also, ESC is shown to be able to turn off least efficient ODU during load decrease without model knowledge. The load-sharing BPV at the compressor suction-side demonstrates bearable pressure loss except for the scenarios of large split ratio

    Predictive control methods to improve energy efficiency and reduce demand in buildings

    Get PDF
    Abstract This paper presents an overview of results and future challenges on temperature control and cost optimization in building energy systems. Control and economic optimization issues are discussed and illustrated through sophisticated simulation examples. The paper concludes with effective results from model predictive control solutions and identification of important directions for future work

    Trials of the urban ecologist

    Get PDF
    A group of scientists describe some of the obstacles encountered and insights gained while carrying out ecological research in and around the city of Indianapolis
    corecore